Basic concepts

- 1. Atmospheric continuum
- 2. Physical dimensions, variables and units
- 3. Conservation laws (momentum, mass, energy)
- 4. Eulerian and Lagrangian viewpoints

Source: Videezy.com

Concept of a "continuum"

The atmosphere (or fluid) is composed of molecules, but!

"The atmosphere can be regarded as a continuous fluid medium, or continuum. A point in the continuum is regarded as a volume element that is very small compared with the volume of atmosphere under consideration, but still contains a large number of molecules...

air parcel and air particle are both commonly used to refer to such a point" (Intro. dyn. Met., Holton)

> But, I'm not the first one who mentioned this concept. Augustin-Louis Cauchy (1798-1857) is the one.

Professor James Reed Holton (1938-2004)

Concept of a "continuum"

Figures from "Practical Meteorology (R. Stull)"

Concept of a "continuum"

"a volume element (control volume, air parcel) contains a large number of molecules"

>> ~2.8 × 10¹⁹ molecules/cm³ under standard temperature (273.15 K) and pressure (1013 hPa)

Physical quantities (**pressure**, **density**, **temperature**, **wind**) are **uniquely defined** at each point (air parcel) under the concept of atmospheric continuum.

International system of unit (SI unit)

SI Base Units

Property	Unit	Name
Length	m	Meter
Mass	kg	Kilogram
Time	S	Second
Temperature	K	Kelvin

Derived Units

Property	Unit	Name
Force	N (kg m s ⁻²)	Newton
Pressure	Pa (N m ⁻²)	Pascal
Energy	J (N m)	Joule
Power	$W(J s^{-1})$	Watt
Frequency	Hz (s ⁻¹)	Hertz

Atmos. variables: Pressure (P)

Easy definition (hydrostatic pressure)

Weight of air column above the measurement point

(from faculty.sdmiramar.edu/)

General definition

Force acting perpendicular to a unit surface (P=F/A) (by randomly moving molecules that bounce off the surface

- Atmospheric pressure)

* Units: N/m² (Pascal, Pa)

* Standard sea-level pressure: 101325 Pa (1013.25 hPa)

(from ChemEd DL)

Atmos. variables : Density (ρ)

Density is defined as mass (m) per unit volume (V):

$$\rho = m/V$$

- * Units: kg/m³
- * Sea-level density at 288 K (15°C)

$$\rho_o$$
 = 1.225 kg/m³

- * Gases such as air are compressible, air density can vary.
- * Atmospheric density decreases exponentially with height.

Atmos. variables: Temperature (T)

Simple concept

Measure of "hot" and "cold"

Kinematic temperature

Higher temperatures $m{T}$ are associated with greater average molecular speeds $m{v}$

$$N\left[\frac{1}{2}mv^2\right]_{avg} = \frac{3}{2}nR^*T$$

N number of molecules

m mass of molecule (kg)

n amount of molecules (in moles)

 R^* gas constant (=8.314 J K⁻¹mol⁻¹)

 $(N/n = N_A, Avogadro's number)$

(from www.dlt.ncssm.edu)

©NCSSM 2002

Atmos. variables: Wind (v)

Simple concept

"When a group of molecules move predominantly in the same direction, the motion is called wind" (Practical Meteorology)

Recall the concept of **continuum**

Note: difference from Kinematic temperature

When molecules move in random directions, the motion is associated with temperature (Practical Meteorology).

Ideal gas

"An ideal gas is a theoretical gas composed of many randomly moving point particles that do not interact except when they collide elastically... At normal conditions, most real gases (N₂, O₂, H₂, etc) behave like an ideal gas" (wikipedia)

Ideal gas law

$$PV = nR*T$$

- pressure (Pa)
- Vvolume (m³)
- Ttemperature (K)
- amount of molecules (in moles)
- R^* gas constant (=8.314 J·K⁻¹mol⁻¹)

(22.4 x 10⁻³ m³)

Ideal gas

"An **ideal gas** is a theoretical gas composed of many randomly moving point particles that do not interact except when they collide elastically... At normal conditions, most real gases (N₂, O₂, H₂, etc) behave like an ideal gas" (wikipedia)

Ideal gas

"An **ideal gas** is a theoretical gas composed of many randomly moving point particles that do not interact except when they collide elastically... At normal conditions, most real gases (N₂, O₂, H₂, etc) behave like an ideal gas" (wikipedia)

Ideal gas law (equation of state)

Atmospheric version

$$P = \rho RT$$

P pressure (Pa)

 ρ density (kg m⁻³)

T temperature (K)

R specific gas constant (=287 J $K^{-1}kg^{-1}$) of dry air - atmospheric version

Derivation

$$PV = nR*T$$

n amount of molecules (in moles)

 R^* gas constant (=8.314 J K⁻¹ mol⁻¹)

M moler mass of dry air (kg mol⁻¹)

$$P = nR*T/V = nR*(M/M)T/V = (\underline{nM/V}) \times (\underline{R*/M}) \times T$$

$$\rho$$

 $P = \rho RT$

(where $R = R^*/M$)

Conservation of momentum

Newton's law of motion

- When viewed in an inertial reference frame, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
- The vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration vector a of the object:
 F = ma.
- 3. When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

Principia Mathematica, 1687 (obtained from wikipedia)

Conservation of momentum

Momentum (p)

The quantity of motion of a moving body, measured as a product of its mass and velocity.

 $\mathbf{p} = \mathbf{m}\mathbf{v}$ (bold-face means a vector quantity)

* Units: kg m/s (N s)

*
$$\mathbf{F} = \Delta \mathbf{p}/\Delta \dagger$$
 [$\mathbf{F} = \Delta (m\mathbf{v})/\Delta \dagger \rightarrow \mathbf{F} = m\mathbf{a}$]

Conservation of momentum

Momentum (p)

The quantity of motion of a moving body, measured as a product of its mass and velocity.

 $\mathbf{p} = \mathbf{m}\mathbf{v}$ (bold-face means a vector quantity)

* Units: kg m/s (N s)

*
$$\int_0^t \vec{\mathbf{F}} dt = \int_0^{t'} m \vec{\mathbf{a}} dt \quad \Rightarrow \quad \int_0^t \vec{\mathbf{F}} dt = m \vec{\mathbf{v}} \Big|_{t=0}^{t=t'} = \vec{\mathbf{p}} \Big|_{t=0}^{t=t'}$$

Atmospheric version

$$\frac{(\rho \delta x \delta y \delta z) \frac{D\vec{\mathbf{v}}}{Dt}}{m} = \frac{\vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \cdots}{\sum \mathbf{F}}$$

$$\frac{D\vec{\mathbf{v}}}{Dt} = \frac{1}{\rho} \frac{\vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \cdots}{\delta x \delta y \delta z} = \frac{1}{\rho} \vec{\mathbf{F}}_1' + \frac{1}{\rho} \vec{\mathbf{F}}_2' + \cdots$$

Force per unit volume

Conservation of momentum

Momentum (p)

The quantity of motion of a moving body, measured as a product of its mass and velocity.

$$\mathbf{p} = \mathbf{m}\mathbf{v}$$
 (bold-face means a vector quantity)

(from wikipedia, momentum movie)

$$p_a + p_b = p'_a + p'_b$$

Conservation of mass

Eulerian view (fixed point)

Rate of mass change in a fixed volume must equal the rate of net mass influx through the walls

$$\frac{\partial(m)}{\partial t} = \left[-\frac{\partial(\rho u \delta y \delta z)}{\partial x} \left(\frac{\delta x}{2} \right) \right] + \left[\frac{\partial(\rho u \delta y \delta z)}{\partial x} \left(-\frac{\delta x}{2} \right) \right] + \dots$$

$$= -\frac{\partial(\rho u)}{\partial x} \delta x \delta y \delta z - \frac{\partial(\rho v)}{\partial y} \delta x \delta y \delta z - \frac{\partial(\rho w)}{\partial z} \delta x \delta y \delta z$$

$$\frac{\partial \rho}{\partial t} = -\frac{\partial(\rho u)}{\partial x} - \frac{\partial(\rho v)}{\partial y} - \frac{\partial(\rho w)}{\partial z}$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{v}}) = 0$$
popular form

Conservation of energy

First law of thermodynamics

For a closed system,

$$\Delta U = Q - W$$
 (or $Q = \Delta U + W$)

Heat supplied change in Work done from outside Internal energy by the system

Atmospheric version (ideal gas, per unit mass)

$$c_{v}\Delta T + p\Delta\alpha = q$$

$$c_{v}\frac{DT}{Dt} + p\frac{D\alpha}{Dt} = J$$

$$\frac{DT}{Dt} - \alpha \frac{Dp}{Dt} = J$$

$$\frac{DT}{Dt} - \alpha \frac{Dp}{Dt} = J$$

$$\frac{DD}{Dt} - \alpha \frac{Dp}{Dt} = J$$

Eulerian vs. Lagrangian

Eulerian description

Describe properties (p,T, ρ,v) of fluid flow **at a fixed point** or volume (easy for math description and measurements)

Lagrangian description

Describe properties (p,T, ρ,v) of fluid flow **following a parcel** or volume (easy to think; 'F = ma' works with this concept)

Material derivative (total derivative)

Material derivative, D()/Dt

describes the <u>time rate of change</u> of some physical quantity (p,T,ρ,v) for a <u>material element</u> (Lagrangian) subjected to a space-and-time-change.

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}$$

$$Lagrangian = \frac{\partial T}{\partial t} + \vec{\mathbf{v}} \cdot \nabla T$$
Eulerian

∂()/∂t partial derivative (measures local change, **Eulerian**)

Material derivative (total derivative)

Material derivative, D()/Dt

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}$$
3 K/s 1 K/s 2 m/s × (2 K)/(2 m)

Material derivative (total derivative)

Material derivative, D()/Dt

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}$$

$$3 \text{ K/s} = 1 \text{ K/s} + 2 \text{ K/s}$$

Conservation of mass

Lagrangian view (following material)

Mass of a material volume should be conserved with motion.

$$\frac{D(m)}{Dt} = 0 \qquad m = \rho \delta x \delta y \delta z$$

$$\frac{D(\rho \delta x \delta y \delta z)}{Dt} = \frac{D(\rho)}{Dt} \delta x \delta y \delta z + \rho \frac{D(\delta x \delta y \delta z)}{Dt} = 0$$

$$\frac{D(\rho)}{Dt} + \rho \frac{1}{\delta x \delta y \delta z} \frac{D(\delta x \delta y \delta z)}{Dt} = 0$$

$$\frac{D\rho}{Dt} + \rho \nabla \cdot \vec{\mathbf{v}} = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{v}}) = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{v}}) = 0$$

$$\frac{\partial \rho}{\partial t} = 0$$

References

- Introduction to Dynamic Meteorology (J. R. Holton)
- Practical Meteorology (R. Stull, 2015) available in web (https://www.eoas.ubc.ca/books/Practical Meteorology/)