Forces

- 1. Pressure gradient force
- 2. Gravitational force
- 3. Viscous force

Pressure gradient force (PGF)

A fluid parcel placed in a **pressure gradient** is subjected to a **net force** associated with pressure difference between one side and the other.

* Recall **pressure** is force per a unit surface, $[N/m^2]$ (by molecules that bounce off the surface, randomly)

(from environment Canada, ec.gc.ca)

Pressure gradient force (PGF)

A fluid parcel placed in a **pressure gradient** is subjected to a **net force** associated with pressure difference between one side and the other.

* Recall **pressure** is force per a unit surface, $[N/m^2]$ (by molecules that bounce off the surface, randomly)

Pressure gradient force (PGF)

A fluid parcel placed in a **pressure gradient** is subjected to a **net force** associated with pressure difference between one side and the other.

$$F_{Ax} = -p_A \delta y \delta z \qquad F_{Bx} = p_B \delta y \delta z$$

$$\frac{F_x}{m} = -\frac{(p_A - p_B) \delta y \delta z}{\rho \delta x \delta y \delta z}$$

Gravitational force

Newton's law of universal gravitation

Any two elements of mass attract each other with a force proportional to their masses and inversely proportional to the square of distance.

$$\vec{\mathbf{F}}_{G} = -\frac{GMm}{r^{2}}\hat{\mathbf{r}}$$

$$\frac{\vec{\mathbf{F}}_{G}}{m} = -\frac{GM}{r^{2}}\hat{\mathbf{r}} \approx -\frac{GM}{a^{2}}\hat{\mathbf{r}} = -\mathbf{k}g_{0}^{*}$$
(k = unit vector in z direction)

Viscous force

Internal friction in a fluid. Viscosity arises when the fluid velocity varies spatially so that random molecular (or small-scale eddy) motion makes a net transport of momentum from faster-moving parcel to slower-moving one... (Intro. dyn. Met., Holton).

Viscous force

Internal friction in a fluid. Viscosity arises when the fluid velocity varies spatially so that random molecular (or small-scale eddy) motion makes a net transport of momentum from faster-moving parcel to slower-moving one... (Intro. dyn. Met., Holton).

Viscous force

Internal friction in a fluid. Viscosity arises when the fluid velocity varies spatially so that random molecular (or small-scale eddy) motion makes a net transport of momentum from faster-moving parcel to slower-moving one... (Intro. dyn. Met., Holton).

Viscous force

Internal friction in a fluid. Viscosity arises when the fluid velocity varies spatially so that random molecular (or small-scale eddy) motion makes a net transport of momentum from faster-moving parcel to slower-moving one... (Intro. dyn. Met., Holton).

Viscous force

Loss of momentum from maximum value to surrounding region (diffuse out momentum...)

$$\frac{Du}{Dt} = v \frac{\partial^2 u}{\partial z^2}$$
 Diffusion equation

$$\frac{Du}{Dt} = v \frac{\partial^2 u}{\partial z^2}$$
 Diffusion equation

Simulated using CFDtool & Matlab